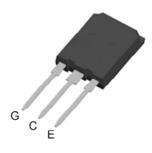
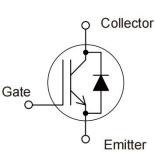


Preliminary


DKQ150N120VX7

CoolFAST[™] Series Seventh Generation

1200V 150A CoolFAST[™] 7 Technology IGBT


Features:

- Low Switching Power Loss
- Low Switching Surge and Noise
- Advanced Field Stop Technology
- Low EMI
- Maximum Junction Temperature 175°C
- Qualified According to JEDEC For Target Applications
- Pb-free Lead Plating, Halogen-free Mold Compound, RoHS Compliant

Applications:

- Industrial UPS
- Welding Machine
- Solar Converters
- EV Charger

Key Performance and Package Parameters

Туре	VCE	lc	V _{CEsat} , T _{vj} =25°C	T _{vjmax}	Marking	Package
DKQ150N120VX7	1200V	150A	2.0 V	175°C	DKQ150N120VX7	TO-247PLUS-3L

Maximum Ratings and Characteristics

Absolute Maximum Ratings at T_{vj}= 25°C (unless otherwise specified)

Items	Symbols	Value	Units V	
Collector-emitter voltage	V _{CES}	1200		
Gate-emitter voltage	VGES	±20	V	
Transient gate-emitter voltage (t _p ≤ 10µs, D< 0.010)	VGES	±30	V	
DC collector current, limited by T _{vjmax}				
T _C = 25°C	Ic	175	A	
Tc= 100°C		150		
Pulsed collector current, t_p limited by T_{vjmax}	I _{CP}	600	A	
Diode forward current, limited by T _{vjmax}				
T _C = 25°C	IF	180	A	
T _C = 100°C		150		
Diode Pulsed collector current, t_{P} limited by T_{vjmax}	IFP	600	A	
Short circuit withstand time, V _{GE} = 15V, V _{CE} \leq 600V	Tsc	10	μs	
Operating junction temperature	T _{vj}	-40 ~ +175	°C	
Storage temperature	T _{stg}	-55 ~ +175	°C	

CoolFAST[™] Series Seventh Generation

Electrical Characteristics at T_{vj}= 25°C (unless otherwise specified)

Description	Cumph ala	Conditions	Characteristics			11
Description	Symbols	Symbols Conditions		Тур	Max	Unit
Collector-emitter breakdown voltage	V _{(BR)CES}	V _{GE} = 0V, I _C = 0.25mA	1200	-	-	V
Zero gate voltage collector current	ICES	V _{CE} = 1200V, V _{GE} = 0V	-	-	200	μA
Gate-emitter leakage current	I _{GES}	V _{CE} = 0V, V _{GE} = ±20V	-	-	±200	nA
Gate-emitter threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 150 \text{mA}$	6.0	6.6	7.2	V
		V _{GE} = 15V, I _C = 150A				
Collector-emitter saturation voltage	V _{CE(sat)}	T _{vj} = 25°C	-	2.0	2.4	V
		T _{vj} = 175°C	-	2.2		
Input capacitance	Cies	$y_{1} = 25y_{1}y_{2} = 0y_{1}$	-	40	-	nF
Output capacitance	Coes	V _{CE} = 25V, V _{GE} = 0V f= 1MHz	-	330	-	pF
Reverse transfer capacitance	Cres		-	195	-	pF
Gate charge	Q _G	V _{CC} = 960V, I _C = 150A, V _{GE} = 15V	-	1450	-	nC
		I _F = 150A				
Forward voltage drop	VF	T _{vj} = 25°C	-	3.5	4.0	V
		T _{vj} = 175°C	-	6.8		

Switching Characteristics at T_{vj}= 25°C

Description	Current a la	Conditions	Characteristics			11	
Description	Symbols	Conditions	Min	Тур	Max	Unit	
IGBT Characteristics			•				
Turn-on delay time	t _{d(on)}		-	350	-	ns	
Rise time	tr	V _{cc} = 600V	-	140	-	ns	
Turn-off delay time	t _{d(off)}	I _C = 150A	-	360	-	ns	
Fall time	tr	V _{GE} = 15V	-	160	-	ns	
Turn-on energy	Eon	R _G = 10Ω	-	14.5	-	mJ	
Turn-off energy	E _{off}	Inductive load	-	7.9	-	mJ	
Total switching energy	Ets		-	22.4	-	mJ	
Diode Characteristics			•				
Diode reverse recovery time	t _{rr}	V _{CC} = 600V	-	63	-	ns	
Diode reverse recovery charge	Qrr	I⊧= 150A	-	0.31	-	μC	
Diode peak reverse recovery current	Irrm	di⊧/dt= 803A/µs	-	11	-	A	

Thermal Resistance

ltama	Cumhala	C	11		
Items	Symbols	Min	Тур	Max	Unit
Thermal resistance, junction-ambient	R _{th(j-a)}	-	-	50	
Thermal resistance, IGBT junction to case	R _{th(j-c)}	-	-	0.2	°C /W
Thermal resistance, diodes junction to case	R _{th(j-c)}	-	-	0.3	

Preliminary

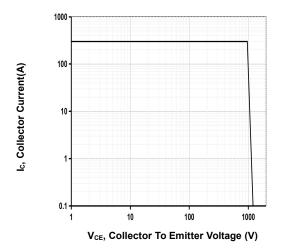
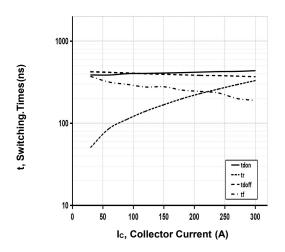
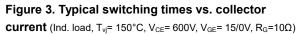
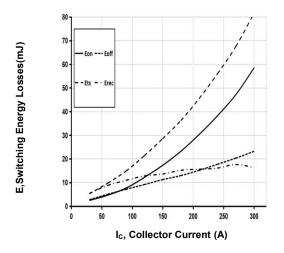
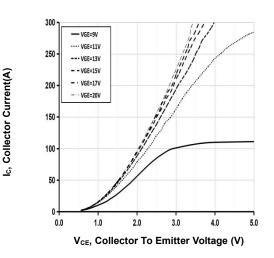
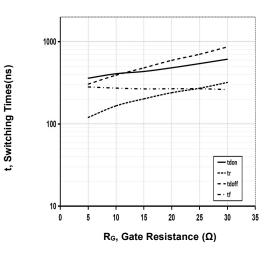
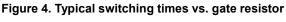




Figure 1. Reverse bias safe operating area (D= 0, T_C = 25°C, T_V ≤ 150°C; V_{GE} = 15V)


Figure 5. Typical switching energy losses vs. collector current (Ind. load, T_{vj} = 150°C, V_{CE} = 600V, V_{GE} = 15/0V, R_G =10 Ω)


DKQ150N120VX7

CoolFAST[™] Series Seventh Generation

Figure 2. Typical output characteristic (T_{vl}= 150°C)

(Ind. Load, T_{vj} = 150°C, V_{CE} = 600V, V_{GE} = 15/0V, I_{C} = 150A)

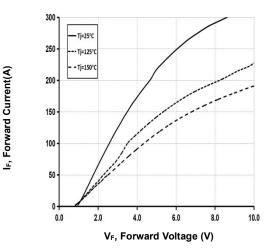
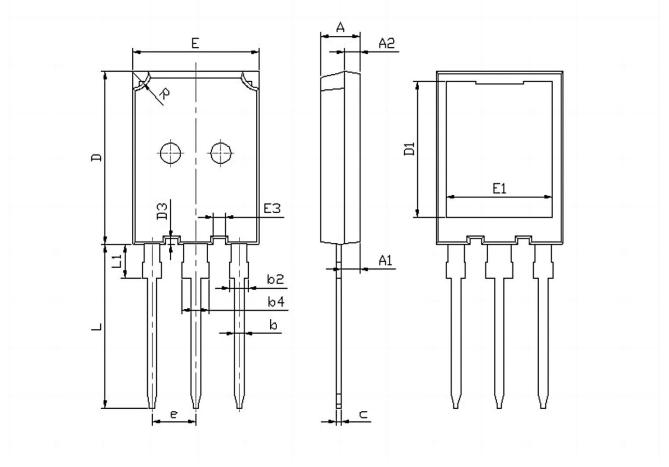


Figure 6. Typical diode forward current vs. forward voltage

DKQ150N120VX7


Preliminary

CoolFAST[™] Series Seventh Generation

TO-247PLUS-3L Package Outline

						UNIT: mm		
SYMBOL	MIN	NOM	MAX	SYMBOL	MIN	NOM	MAX	
Α	4.80	5.00	5. 20	D3	0. 53	0. 68	0. 83	
A1	2. 21	2.40	2. 61	E	15. 50	15.80	16. 10	
A2	1.85		2. 15	E1	13. 10	13.30	13.50	
b	1.07	1.20	1. 33	E3	1. 30	1. 45	1.60	
b2	1.90		2.16	e		5. 44		
b4	2.90		3. 20	L	19. 62	19.92	20. 22	
с	0.52	0.60	0. 68	L1			4. 30	
D	20. 70	21.00	21.30	R	1.85	2.00	2. 15	
D1	16. 25	16. 55	16.85					

TO-247plus-3L MECHANICAL DATA

Revision History

Revision	Date	Subjects (major changes since last revision)			
0.1	2024-03-27	Preliminary version			
0.2	2024-05-16	Preliminary version			

The information given herein shall be not regarded as a guarantee of conditions or characteristics. For any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Drvtek hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given herein is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Drvtek in customer's applications.

The data contained herein is exclusively intended for technically trained staff. It is the responsibility of customer to evaluate the suitability of the product for the intended application and the completeness of the product information given herein for such application.

For further information on the product, technology, delivery, conditions and prices please contact Drvtek (www.Drvtek.com).

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact Drvtek.

Except as otherwise approved by Drvtek in a written document, Drvtek products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.